吉林红旗岭富家矿床矿石矿物化学和硫同位素特征——对铜镍硫化物矿床成因及成矿过程的约束
    点此下载全文
引用本文:吕林素,李宏博,周振华,徐立国,杨小男,毛冰.2017.吉林红旗岭富家矿床矿石矿物化学和硫同位素特征——对铜镍硫化物矿床成因及成矿过程的约束[J].地球学报,38(2):193-207.
DOI:10.3975/cagsb.2017.02.12
摘要点击次数: 392
全文下载次数: 353
作者单位E-mail
吕林素 中国地质博物馆 lulinsu@126.com 
李宏博 中国地质博物馆  
周振华 中国地质科学院矿产资源研究所  
徐立国 中国地质博物馆  
杨小男 中国地质博物馆  
毛冰 中国地质博物馆  
基金项目:财政部项目“地质遗迹标本采集、购置与综合研究”(编号: 121113000000160034-11)
中文摘要:本文对吉林红旗岭富家矿床中的矿石矿物进行了系统的矿物化学和硫同位素研究。矿石矿物共生组合主要为磁黄铁矿(Po)-镍黄铁矿(Pn)-黄铜矿(Cp)-黄铁矿(Py), 其中Po有单斜磁黄铁矿(Mpo)、六方磁黄铁矿(Hpo)和六方陨硫铁(Tr)相之分, 并以Mpo(低温相)为主; Pn有Pn(1)→Pn(2)→Pn(3)的演化趋势; Py有Py(1)→Py(2)→Py(3)→Py(4), 均为同一矿化期的不同世代的产物。利用Py-Po矿物对计算出矿石矿物的结晶温度介于500~300℃之间, 大致结晶顺序为Pn→Po→Cp→Py。硫同位素特征表明, δ34S值变化较小, 介于–4.70‰ ~ +2.40‰之间, δ34S值呈塔式分布, 集中分布于–2.5‰ ~ +2.5‰之间, δ34S值略高于地幔硫(0±2‰), 并有δ34SPo>δ34S硫化物>δ34SPy的特征, 表明硫来源于地幔, 仅有微弱的地壳物质混染, 且成矿熔体中硫已达到平衡。结合野外矿体特征和矿石组构特征, 富家矿床的成矿物质来源于上地幔; 成矿作用方式以岩浆熔离作用为主, 兼具岩浆期后热液叠加成矿作用; 矿床为通道式成矿, 属于深部熔离-贯入式成因。
中文关键词:矿物化学  硫同位素  矿床成因  成矿过程  岩浆铜镍硫化物矿床  红旗岭
 
Mineral Chemistry and Sulfur Isotopic Characteristics of Ores from the Fujia Deposit in Hongqiling Area, Jilin Province: Constraints on the Genesis and Ore-forming Processes of Ni-Cu Sulfide Deposit
Abstract:Systematic studies of mineral chemistry and sulfur isotope of the ore minerals were carried out at the Fujia deposit in Hongqiling area, Jilin Province. Coexisting ore minerals mainly consist of pyrrhotite (Po), pentlandite (Pn), chalcopyrite (Cp) and pyrite (Py). The pyrrhotite includes monoclinic pyrrhotite (Mpo), hexagonal pyrrhotite (Hpo) and troilite (Tr), with the Mpo (a low temperature polymorphism) being dominant. The pentlandite evolved from Pn(1) via Pn(2) to Pn(3), whereas the pyrite varied in the sequence of Py(1)→Py(2)→Py(3)→Py(4) at the same mineralization stage. The pyrite-pyrrhotite mineral thermometry shows that the mineralizing temperatures of the ore minerals vary between 500°C and 300°C, while the mineralizing sequence is approximately Pn→Po→Cp→Py. Sulfur isotopic characteristics show that the variation of δ34S values is relatively small (from –4.70‰ to +2.40‰), and statistics of the values fit tower-style distribution between –2.5‰ and +2.5‰, which indicates that sulfur of metal sources of this deposit was derived from the mantle with only a slight crustal contamination. In addition, the δ34S values show δ34SPo>δ34Ssulfide>δ34Spy, indicating that sulfur reached equilibrium in ore-forming melt. In combination with characteristics of the orebodies in the field and ore fabric, the authors hold that the ore-forming materials were principally derived from the upper mantle. Magmatic liquation was the major mineralization process, combined with obvious magmatic hydrothermal superimposition. The deposit is conduit-type mineralization, which can be explained by intrusion of deep ore-bearing magma and magma liquation-conduit-style mineralization.
keywords:mineral chemistry  sulfur isotope  ore genesis  ore-forming process  magmatic Ni-Cu sulfide deposit  Hongqiling
查看全文  查看/发表评论  下载PDF阅读器
版权所有 《地球学报》编辑部 Copyright©2008 All Rights Reserved
主管单位:国土资源部 主办单位:中国地质科学院
地址: 北京市西城区百万庄大街26号,中国地质科学院东楼317室 邮编:100037 电话:010-68327396 E-mail: diqiuxb@126.com
技术支持:东方网景